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Chiral Spin Liquid Wave Function and the Lieb-Schultz-Mattis Theorem
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We study a chiral spin liquid wave function defined as a Gutzwiller projected BCS state with a
complex pairing function. After projection, spontaneous dimerization is found for any odd but finite
number of chains, thus satisfying the Lieb-Schultz-Mattis theorem, whereas for an even number of
chains there is no dimerization. The two-dimensional thermodynamic limit is consistently reached for a
large number of chains since the dimer order parameter vanishes in this limit. This property clearly
supports the possibility of a spin liquid ground state in two dimensions with a gap to all physical
excitations and with no broken translation symmetry.
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tion, the wave function (1) corresponds to PBC on the spin
Hamiltonian, regardless of the choice of boundary con-

case, a spontaneously broken lattice symmetry can occur
only in the thermodynamic limit.
A long time after its first proposal [1], the existence of a
spin liquid ground state (GS) in two-dimensional (2D)
quantum spin one-half models is still a very controversial
issue. This is mainly because all one-dimensional (1D) or
quasi-1D spin models that can be solved exactly, either
numerically or analytically [2–4], display a gap to the
spin excitations only when a broken translation symmetry
is found in GS (e.g., in spin-Peierls systems [2,3]) or when
the unit cell contains an even number of spin 1=2 elec-
trons (e.g., in the two-chain Heisenberg model [4]).
Hence, in these models the electronic correlations do
not play a crucial role since their GS can be adiabatically
connected to a band insulator without any transition. This
important property of insulators, which clearly holds in
1D systems, has been speculated to be generally valid
even in higher dimensions, as it appears to follow from a
general result, the Lieb-Schultz-Mattis (LSM) theorem
[5], whose range of validity has been extended to more
interesting 2D cases [6,7].

Recently, there has been an intense theoretical and
numerical investigation of nonmagnetic wave functions
obtained after Gutzwiller projection of the GS of a BCS
Hamiltonian [8–11]. On a rectangular Lx � Ly lattice,
this state can be written in the following general form:

jp-BCSi � P̂PG
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where N is the number of electrons (equal to the number
of sites, i.e., N � Lx � Ly), P̂PG is the Gutzwiller projec-
tion onto the subspace of no doubly occupied sites, and ĉcyk;"
and ĉcyk;# are creation operators of a spin-up or a spin-down
electron, respectively. These are defined in a plane-wave
state with momentum k allowed by the chosen boundary
conditions: periodic (PBC) or antiperiodic (APBC) in
each direction. It is worth noting that, after the projec-
0031-9007=03=91(25)=257005(4)$20.00 
ditions on the electronic states. The pairing function fk
can be easily related to the gap function �k and the bare
dispersion 
k � �2	coskx 
 cosky� of the BCS Hamil-
tonian (BCSH) [9], by means of the simple relation fk �
�k=	
k 
 Ek�, where the gap function �k can be in general
any complex function even under inversion (�k � ��k),
as required here for a singlet wave function [9], and Ek �����������������������
j�kj

2 
 
2k

q
represents the spin-half excitation energies

of the BCSH.
As clearly pointed out by Wen [12], in the presence of a

finite gap �BCS in the thermodynamic limit, such that
Ek � �BCS > 0, the corresponding BCS finite correlation
length is expected to be robust under Gutzwiller projec-
tion. Here, we restrict to this class of nonmagnetic states,
considering the projected BCS (p-BCS) state which is
obtained by a d
 id gap function of the form

�k � �x2�y2	coskx � cosky� 
 i�xy sinkx sinky: (2)

In the following, we will consider the case of �x2�y2 � 2
and �xy � 1. This wave function breaks the time reversal
symmetry T̂T and the parity symmetry (x$ y in 2D) P̂P,
whereas T̂T � P̂P is instead a well-defined symmetry.
Hence, this spin liquid wave function may have a non-
vanishing value of the chiral order parameter [13]:

ÔO C �
1

N

X
i

ŜSi � 	ŜSi
dx � ŜSi
dy�; (3)

with dx � 	1; 0� and dy � 	0; 1�. Chiral spin liquids were
introduced a long time ago [13,14]; however, to our
knowledge, this is the first attempt to represent this class
of states in the p-BCS framework. In finite-size systems,
it is convenient to define a wave function which satisfies
all the lattice symmetries, including parity. This can be
done by suitably choosing the overall phase of the com-
plex wave function (1) and taking its real part. In this
2003 The American Physical Society 257005-1
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In the following, by using a variational Monte Carlo
approach, we consider in more detail the relation of the
p-BCS wave functions with the LSM theorem. Given a
short-range spin Hamiltonian ĤH, on a Lx � Ly rectangle
(PBC on the x direction are assumed) and a variational
state j 0i with given momentum, we can define another
variational state, j 0

0i � ÔOLSMj 0i, by means of the LSM
operator:

ÔO LSM � exp

"
i
X
r

2�x
Lx

ŜSzr

#
; (4)

where r � 	x; y� indicates the position of each site on the
lattice. The new variational state j 0

0i has the following
properties: (i) its energy expectation value differs at most
byO	Ly=Lx� from the variational energy of j 0i and (ii) if
Ly is odd, regardless of the boundary conditions on the y
direction, the momenta parallel to x corresponding to
j 0i and j 0

0i differ by �. Hence, h 0
0j 0i � 0 [6].

For a 1D or quasi-1D system with an odd number of
chains Ly and vanishing aspect ratio (Ly=Lx ! 0 for
Lx ! 1), by applying the LSM operator to the actual
GS, it is possible to construct an excitation of the system
with momentum 	�; 0� which becomes degenerate with
the GS in the thermodynamic limit. This implies either a
gapless spectrum or, in the presence of a finite gap, a
twofold degenerate GS with a doubling of the unit cell and
a spontaneously broken translation symmetry. For in-
stance, the presence of a singlet zero-energy excitation
with momentum 	�; 0� is just a characteristic of sponta-
neous spin-Peierls dimerization, as it appears, for ex-
ample, in the Majumdar-Ghosh chain [2]. This result,
holding rigorously in the limit of vanishing aspect ratio,
has been argued to apply in general for 2D systems [6,7].
In the following, we will show, with an explicit example,
that this result in 2D does not necessarily imply sponta-
neous dimerization, but topological degeneracy of the GS.

It is simple to show that ÔOLSMjp-BCSi � jp-BCS0i,
namely, the same type of wave function of Eq. (1) is
obtained, with the changes below:

k! �kk; (5)

fk ! �ff �kk � f �kk�	�=Lx;0� � fk; (6)

where the new quantized momenta �kk � k
 	�=Lx; 0� are
obtained by interchanging PBC with APBC in the x
direction only and Eq. (6) means that the pairing function
is calculated with the old momenta k: fkĉc

y
�kk;"
ĉcy
� �kk;#

. By
definition, the wave function jp-BCS0i has therefore the
same quantum numbers predicted by the LSM theorem,
the change of momentum being implied by Eq. (5). The
reason why the momentum of the wave function (1) can be
nonzero for an odd number of chains is indeed rather
subtle but easy to verify. Indeed the x-translation operator
with APBC translates all creation operators, but the ones
belonging to the boundary are also multiplied by a phase
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factor 	�1�. This translation operator always leaves in-
variant the jp-BCS0i wave function. However, for a spin
state with one electron per site, each configuration has
always Ly electrons at the boundary, so that the physical
spin translation operation (defined with PBC), differs
from the APBC one for an overall phase 	�1�Ly , namely,
a momentum 	�; 0� for an odd number of chains.
Analogously, the excitations obtained by modifying
only the boundary conditions in the BCSH (in the x
and/or y direction), namely, using Eq. (5) (and/or its
equivalent for the y direction) and fk ! f �kk, may display
in 2D the topological degeneracy of this spin liquid wave
function [10,11].

We now assume that the p-BCS wave function (1) with
�k given by Eq. (2) represents the GS of some short-range
Hamiltonian. Certainly, explicit Hamiltonians with
short-range off-diagonal matrix elements can be con-
structed by a simple inversion scheme [15]. This can be
obtained considering a given basis of configurations fjxig,
where the positions and the spins of the electrons are
defined. First, we expand the wave function (1) in this
local basis as jp-BCSi �

P
x�xjxi. Then, starting from a

local and short-range Hamiltonian ĤH with matrix ele-
ments Hx;x0 (e.g., a frustrated Heisenberg model), it is
possible to define an effective Hamiltonian ĤHeff by mod-
ifying the matrix elements as follows:

Heff
x0;x �

8><
>:
V eff	x� for x0 � x
Hx0;x if sx0;x < 0
0 if sx0;x > 0;

(7)

where sx0;x � �x0Hx0;x�x for x0 � x and sx;x � 0,
and the diagonal potential is given by V eff	x� �
�
P
x0;sx0 ;x<0�x0Hx0;x=�x. It is easily verified that jp-BCSi

is an eigenstate of ĤHeff , as ĤHeff jp-BCSi � 0. Then, if ÛU is
a unitary transformation such that jxi ! sign	�x�jxi,
ÛUyjp-BCSi has all positive coefficients and the trans-
formed Hamiltonian ÛUyĤHeffÛU has all nonpositive
off-diagonal matrix elements. Therefore, due to the
Perron-Frobenius theorem, jp-BCSi is the GS of ĤHeff . It
is worth noting that, since the LSM operator ÔOLSM is
diagonal in the chosen basis, it is straightforward to
show that the LSM theorem holds for the effective Hamil-
tonian (7).

Besides the fact of being the GS of the effective
Hamiltonian (7), the complex jp-BCSi is also a very
good variational state for simple frustrated systems,
e.g., the so-called J1 � J2 model in the gapped region
(J2=J1 ’ 0:5). Indeed, having a finite gap �BCS, the
jp-BCSi wave function describes a spin system with a
finite correlation length, and, consequently, a finite triplet
gap. For this type of Hamiltonian, the most relevant order
parameter in the nonmagnetic phases is known to be the
dimer one [16]. Hence, we focus our attention on the
dimer-dimer correlations on each chain, �	r� r0� �
hŜSzrŜS

z
r
dx

ŜSzr0 ŜS
z
r0
dx

i, which behaves for large distance as
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FIG. 1 (color online). Dimer-dimer correlation functions as a
function of the distance for three and four chains with PBC on
both directions.

FIG. 2 (color online). (left panel) Finite-size scaling of the
dimer order parameter in the rectangular geometries with an
odd number of chains. ( right panel) Dimer order parameter as a
function of the number of chains. The full circles in the right
panel refer to the short-range resonating valence bond state,
defined as the superposition of all nearest-neighbor dimer
coverings of the lattice with the same weights, having !! 1
in 2D.

FIG. 3 (color online). (a) Chiral order parameter as a function
of the number of chains. (b) Difference of the nearest-neighbor
total energy �Enn � N�hŜSi � ŜSjie � hŜSi � ŜSjio� between two
orthogonal states jei and joi predicted by the LSM theorem.
(c) Finite-size scaling of the dimer order parameter in
rectangular lattices with finite aspect ratio. For (b) and (c),
Ly � Lx 
 1.
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	�1�	x�x
0�O2

SP=36
 const, being OSP the dimer order pa-
rameter [3]. As shown in Fig. 1 for the three-chain case,
spontaneous dimerization is obtained in the thermody-
namic system for odd-leg ladders. Here, in strong analogy
with the one-dimensional Heisenberg model in the
gapped phase [2,3], the broken translation symmetry
allows the system to satisfy the LSM theorem. In contrast,
on any even-leg ladder, the p-BCS state does not break
translational invariance, as shown in Fig. 1 for the four-
chain system. Despite the dichotomy between the odd-
and even-leg cases, the 2D thermodynamic limit can be
still consistently defined. In fact, as it is clearly shown in
Fig. 2, though a finite dimer order parameter is obtained
for any odd-leg ladder, the order parameter is exponen-
tially decreasing with the number of chains. This implies
that the broken symmetry, which is correctly obtained for
odd but finite number of chains, represents an irrelevant
effect in the 2D thermodynamic system. Nonetheless, in
the 2D system, the GS can possess degenerate topological
excitations [17]. Indeed, no simple (two-spin) local op-
erator connects the degenerate states in 2D. Moreover, the
matrix element of the most relevant dimer operator with
momentum 	�; 0� between the two degenerate singlet
states, which is finite on any finite number of chains,
decreases exponentially with increasing Ly, as it is
bounded by the order parameter (see Fig. 2). No other
order is detected by studying dimer correlations.
Remarkably, by studying the chiral-chiral correlations
at the maximum distance along the leg direction, it is
possible to show that the chiral order parameter OC
remains a genuine feature of this variational wave func-
tion even in the 2D limit [see Fig. 3(a)].

We have given here a clear example that a spin liquid
GS can be stable in 2D, yet satisfying all the known
constraints given by the LSM theorem. Indeed, sponta-
neous broken translation symmetry is obtained for any
odd number of chains, a remarkable feature since before
projection the wave function is translationally invariant.
As the number of chains increases, the chiral spin liquid
257005-3
appears only in 2D systems, where the spin-Peierls dimer
order parameter converges to zero, and no broken trans-
lation symmetry is implied in the thermodynamic limit.

The chiral spin liquid described by the p-BCS wave
function is also consistent with a recent extension of the
LSM to 2D systems with finite aspect ratio Ly=Lx [7]. As
pointed out by Oshikawa, the state j 0

0i � ÔOLSMj 0i is
not necessarily degenerate with the starting wave func-
tion j 0i, as in the usual LSM construction. However,
through a well-defined adiabatic evolution—in analogy
with Laughlin’s treatment of the quantum Hall effect —
one can obtain a different state j ~  0

0i, with the same spatial
quantum numbers of j 0

0i and degenerate with j 0i. If
j 0i is described by a p-BCS state (1), by a small change
257005-3
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of the pairing function of the state j 0
0i, i.e., �ff �kk ! f �kk, it is

easy to define a state j ~  0
0i with the same momentum

implied by the LSM theorem but expected to be degen-
erate with j 0i. In fact, the wave function j ~  0

0i can be
obtained with the same BCSH with APBC in the x
direction. Then, in the presence of a finite gap in the
excitation spectrum �BCS > 0, the wave functions j 0i
and j ~  0

0i have the same value of any physical, i.e., local,
operator, and, in particular, the Hamiltonian, so that the
considered states are degenerate in the thermodynamic
limit. In particular, the difference of the nearest-neighbor
total energy of the two states is vanishing exponentially
with the number of chains [see Fig. 3(b)].

The state j ~  0
0i, obtained by the adiabatic evolution of

the LSM excitation, j 0
0i � ÔOLSMj 0i, is no longer con-

nected to j 0i by any physical operator, and, therefore, no
spontaneous dimerization is implied in the thermody-
namic limit. Indeed, as shown in Fig. 3(c), also in ge-
ometries with nonzero aspect ratio the p-BCS wave
function has a finite dimer correlation length. We have
therefore shown a clear counterexample to the so-called
Oshikawa conjecture [7] that no spin liquid is possible for
a spin one-half model in two or higher dimensions.

In general, projected wave functions of the type (1)
with a finite gap �BCS > 0 do not necessarily break time
reversal. For instance, a gapped BCS spectrum can be
obtained with a chemical potential outside the band [11],
with a gap function with d
 is symmetry [12], or simply
with s symmetry. For all these wave functions, a finite
dimer order parameter, in some cases very small but
always nonzero, is found in lattices with infinite aspect
ratio, in agreement with the LSM theorem. Therefore, we
believe that the broken time reversal is not a necessary
condition to satisfy the LSM theorem.

The finite dimer correlation length represents a re-
markable property of the chiral p-BCS wave function.
For instance, the conventional short-range resonating
valence bond (RVB) [18] displays instead power-law
dimer correlations in 2D [19], and therefore gapless fea-
tures which may describe a singular point rather than a
2D spin liquid phase. The fundamental difference be-
tween our chiral RVB and the short-range one is due to
the violation of the Marshall sign rule in the former case.
This property is observed, for instance, in the GS of the
J1 � J2 model in the strongly frustrated region J2=J1 ’
0:5, where this complex wave function has a lower varia-
tional energy compared with the real ones [9]. Thus, we
expect that a true spin liquid phase cannot be stabilized in
the spin models where the wave function signs are not
allowed to change as a function of the parameters of the
Hamiltonian [20]. The complex wave function with
d-wave symmetry proposed here appears to be a reason-
able way to open a gap close to a gapless antiferromag-
netic phase in a translationally invariant spin model
violating the Marshall sign rule, i.e., a generic frustrated
257005-4
model on the square lattice. In this case, the chiral order
parameter can be very small, vanishing for �xy ! 0 when
the correlation length !! 1.

In conclusion, we have presented a clear example that a
spin liquid GS with a gap to all physical excitations,
though being with one electron per unit cell, can be
realized without violating the LSM theorem and its gen-
eralizations in 2D. Our results provide a clear support to
the possibility of a true Mott insulator at zero tempera-
ture, showing that the effect of correlation may be highly
nontrivial in 2D systems.
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